DENIAL OF SERVICE

RULES OF ENGAGEMENT AND MITIGATION STRATEGIES

Stuart Cianos, CISSP SF Bay ISSA Meeting - March 12th, 2014

• Be prepared:

- Approach must cover all your bases
 - Vulnerabilities in the application stack
 - Time complexity: O(1), O(n), $O(\log n)$, $O(n^2)$, etc.
 - *Example*: Attacks against hashing functions (collisions)
 - *Example*: Failing to enforce reasonable limits (shopping cart with 100,000 items)
 - Input validation and bounds checking
 - Can lead to injection vulnerabilities, buffer overflows, etc.
 - Can cause application to end abnormally.
 - Can have the side effect of remote code execution, theft of information, or worse.
 - Improper error handling
 - Application failures and/or undefined behavior
 - A multithreaded instance serving 25,000 concurrent users may have noticeable impact on abend.

• Be prepared:

- Approach must cover all your bases
 - Vulnerabilities in the network stack
 - Takes advantage of (typically) unintended nuances of the design of the networking stack.
 - Denial of Service
 - "Traditional"; a limited or readily identified set of attackers.
 - Typically utilizes the sheer force of a few
 - Harder to hide
 - GMC vs. Yugo
 - Distributed denial of Service
 - A diverse set of attackers, typically under C&C
 - Easy to hide
 - Sheer force of many united against a greater power
 - 50,000 Yugos vs. GMC

- Know where your bodies are buried
 - Consider modeling your threat landscape
 - Introspect: Why is this system a target? What does this outfit have? Be the attacker and step into your adversary's shoes.
 - What does your victim have to offer?
 - Bandwidth? Money? Tools? Political Platform? Industrial trade secrets? Public Sentiment? Sabotage?
 - Do you have more to offer than angry customers?
 - Don't ever forget that a DDOS is a great diversion or opportunity for covert side channel.
 - Why do you want it?
 - How are your going to get it?
 - How motivated are you to get it?
 - How will you get away with it?

- Rule #1:
 - You have no control of outside entities
 - You cannot stop a denial of service attack but you can
 Mitigate a denial of service attack
 - Rule #2: Big lips sink ships. Do not engage attackers. Always maintain integrity.

• The goal is to make the target undesirable:

- The cost of the attack is more than the target is worth (in time, money or both)
- The target is not trivially vulnerable
- The target has nothing to offer

MITIGATING DOS ATTACKS

- Since the flow of traffic cannot be stopped...
 - Work with the traffic and go with the flow
 - Route
 - Limited & identified sources? Upstream null route is effective.
 - During a DDOS attack, routing may be used to swing traffic to alternate data center(s) for capacity or scrubbing.
 - Not the same as pointing DNS at a proxy. If the attacker can determine the backend network behind the proxy, it's game over.
 - Using BGP to control where target AS is routed to.
 - Poor man's solution: Advertise DNS to filtering proxy
 - Absorb
 - Effective on its own if you have the capacity; neuters attack.
 - How quickly can capacity be adjusted on demand?
 - Filter/Scrub
- Defense must be layered
- THINK SCALABILITY in systems design
- MAKE NO ASSUMPTIONS of behavior

BUSINESS CONSIDERATIONS

Budget ahead of time

- Tool should be low cost to deploy and operate
- Budget ahead of time; this should be a known COB
- How long can the business survive offline?
 - Long term ramifications?
 - Loss of customer trust and faith

Know the requirements

- What is the expectation from brass?
 - Business continuity plan requirements
- Know the business and industry
 - Know what capabilities and resources are available
 - Know where opportunities for improvement exist